
Loose Keys Bring These:
Attackers + Me’s
(Incident Responders)

Jonathon Poling

Managing Principal Consultant

Secureworks

About Why Me?
•A little bit about me… blah blah blah

•Why Me? this though

�AWS SME for Secureworks
�Developed Secureworks’ AWS Incident Response Service
Line

�Help SMB through Fortune 10 Customers…
� Intelligently Configure/Instrument Their Environments
�Protect Their Infrastructure

�Effectively Respond to Incidents

Why Did I Put This Together?
After years of doing Incident Response engagements across a
variety of clients and verticals, I came to a few realizations:

1) There are a LOT of Access Key compromises
2) We need to be doing more to both protect against

and respond to Cloud incidents (including #1)
3) Dev(Sec)Ops is a vastly underutilized and very

effective resource (i.e. force multiplier) for doing #2

So, How Will This Help You?

In this talk, you will (hopefully) learn:

�How/why Access Key (AK) compromises occur
�The chronology of an AK compromise
�How to respond to an AK compromise
�Tools/tips/tricks for effective response
�How Dev(Sec)Ops plays a key role in both
protecting and responding to threats in the
Cloud

Why / How Do Access
Key Compromises
Occur?

Most Common Reasons These Occur
•Accidental Commit
• Insecure (Local) Storage
• Insecure Transmission
•Command Line History
•AWS Metadata Service*

Accidental Commit

$ git commit -am “Reminder: Find New Job.”

Insecure (Local) Storage

Insecure Transmission

How are you transmitting Access Keys to your users?

•Email

•Chat

• Internal Data Store

•Something else…?

Command Line History
What happens when an attacker compromises an AWS
Instance?
• Quick “whoami” + check/collect env var’s
�$ env | grep “AWS_”

• Check command line history to:
� See what this system may be used for
� Obtain credentials/secrets input via the CL

• Identify currently assigned role/privileges
• Attempt resource enumeration/exploitation
• …and so on

AWS Metadata Service

Pre/Co-Requisites for Success (acquiring Access Key):

• Access to Instance/Resource to make Metadata call(s)

• Knowledge of specific assigned Instance Profile / Role Name

• (Over)Privilege of assigned Role to perform bad things

All that said… it is clearly a successfully utilized attack vector.

So How Does This Go?

Attackers Be Attackin’
• People are searching and watching GitHub…
� https://github.com/dxa4481/truffleHog
� “Searches through git repositories for high entropy strings and

secrets, digging deep into commit history”
� https://github.com/eth0izzle/shhgit/
� “Shhgit finds secrets and sensitive files across GitHub code and

Gists committed in near real time by listening to the GitHub
Events API.”

� https://github.com/duo-labs/secret-bridge
� Duo’s recent release, similar to ShhGit (uses GitHub Events API hooks)

• Attackers are looking in your Command Line History,
~/.aws/, and Documents folders for plaintext credentials

https://github.com/dxa4481/truffleHog
https://github.com/eth0izzle/shhgit/
https://developer.github.com/v3/activity/events/
https://github.com/duo-labs/secret-bridge

Insecure Credential Storage/Usage

Once credentials are acquired…
it’s off to the races.

Initial Alert

OK, this could be anything…

Initial Alert

W’uh oh…

What Does AWS Suggest?

What Does AWS Suggest?

Which Key is Compromised?

Cool, AWS tells us exactly which key is compromised!

What We Know…

• Credentials Were Leaked (…somewhere)

• Date/Time AWS Became Aware (Alerted Us)

• Access Key ID (AKIA…)

That should be enough to get started investigating…

How Do We Respond
to This?

AWS Credential Prefixes / Formats

In general (the subset we care about for this presentation):

Access Key ID

AKIA[IJ][2-7A-Z]{14}[AQ]
Secret Access Key

[0-9a-zA-Z/+]{40}
AssumeRole Session (STS) Tokens

ASIA[0-9A-Z]{16}

See links in slide notes to read about all the different types

Identify User Associated with Access Key

$ for user in $(aws iam list-users -
-output text | awk '{print $NF}');
do aws iam list-access-keys --user
$user --output text; done | grep
<AccessKey>

Disable / Delete Access Key

Disable Access Key
$ aws iam update-access-key --
access-key-id AKIDPMS9RO4H3FEXAMPLE
--status Inactive [--user-name Bob]

Delete Access Key
$ aws iam delete-access-key --
access-key-id AKIDPMS9RO4H3FEXAMPLE
[--user-name Bob]

Delete User (Optional)

$aws iam delete-user --user-name Bob

Disable Temporary Credential Usage

�Attach IAM Policy to User to…
�Deny Temporary Credentials issued before now
{

"Version": "2012-10-17",
"Statement": {

"Effect": "Deny",
"Action": "*",
"Resource": "*",
"Condition": {

"DateLessThan": {
"aws:TokenIssueTime": "2019-11-04T19:35:00Z”

}
}

}
}

Disable Temporary Credential Usage

�Attach IAM Policy to User to… (Cont.)
�Deny All Actions for 36 hours* (or indefinitely)

*Maximum duration of validity allowed

{
"Version": "2012-10-17",
"Statement": {

"Effect": "Deny",
"Action": "*",
"Resource": "*",

}
}

Search Logs (CloudTrail Lookup-Events)

Caveats:
� Limited to events from last 90 days
� Queries must be performed for each region

Identify/collect all Actions associated with known compromised
Access Key

$ aws cloudtrail lookup-events --lookup-attributes
AttributeKey=AccessKeyId,AttributeValue=AKIAIOSFODNN
7EXAMPLE

Search Logs (CloudTrail Lookup-Events)

Identify any new User Accounts and/or Access Keys created by
attacker for persistence

$ aws cloudtrail lookup-events --lookup-attributes
AttributeKey=AccessKeyId,AttributeValue=AKIAIOSFOD
NN7EXAMPLE --query
‘Events[?EventName==`CreateUser`]’

$ aws cloudtrail lookup-events --lookup-attributes
AttributeKey=AccessKeyId,AttributeValue=AKIAIOSFOD
NN7EXAMPLE --query
‘Events[?EventName==`CreateAccessKey`]’

Search Logs (Athena)

Caveats:
� Presumes you are consolidating CloudTrail logs to a single Bucket
� Requires proper partitioning for performance + $$
� Costs $$ based on size of data searched ($5 / TB Scanned)

Identify/collect all actions associated with known compromised
Access Key (known compromised after 10/1/2019)

> Select *
From cloudtrail_logs
Where userIdentity.accessKeyId = ‘AKIAIOSFODNN7EXAMPLE’
AND eventtime >= ‘2019-10-01T00:00:00Z’

Search Logs (Athena)

Identify any new User Accounts and/or Access Keys created by
attacker for persistence

> Select eventTime, eventName, userIdentity.username,
userIdentity.accessKeyId, sourceIPAddress
From cloudtrail_logs
Where userIdentity.accessKeyId = ‘AKIAIOSFODNN7EXAMPLE’
AND (eventname = ‘CreateUser’ Or eventname =
‘CreateAccessKey’)

Search Logs (Athena)

You can also limit your search to a specific region, day/time, etc.
to increase performance (and also reduce search costs)

> Select eventTime, eventName, userIdentity.username,
userIdentity.accessKeyId, sourceIPAddress
From cloudtrail_logs
Where userIdentity.accessKeyId = ‘AKIAIOSFODNN7EXAMPLE’
AND (eventname = ‘CreateUser’ Or eventname =
‘CreateAccessKey’)
AND region=‘us-east-1’
AND year=‘2019’
AND month=‘10'
AND day=‘31’

Search Logs (JQ)
JQ is a super powerful command-line tool to ETL all your JSON
data to your heart’s content

*Examples below are operating on data collected from “aws cloudtrail lookup-events” output.

Identify/collect all Actions associated with known compromised
Access Key
$ jq -r ‘.Events[] | select(.AccessKeyId==”<AKIA...>”)’
CloudTrail_Lookup-Events_Output.json

Identify any new User Accounts and/or Access Keys created by
attacker for persistence
$ jq -r ‘.Events[] | select(.AccessKeyId==”<AKIA...>”)’
| select(.EventName|test(“Create(User|AccessKey)”))’
CloudTrail_Lookup-Events_Output.json

Search Logs (…)

And, much much more. But, you get the gist…

How Do We Protect
Against This?

Proactive Protection
• Implement local Key/Secrets Management
�Practices
�Don’t store credentials in plaintext anywhere!
�Use/Assume Roles as often as possible
� Implement and enforce (via IAM Policy):
�MFA
�Least Privilege Access

� Implement filtering/blocking AWS Metadata Proxy
�Tools (Examples)
�Git-Secrets, HashiCorp Vault, AWS-Vault, Strongbox, etc.

Proactive Monitoring / Detection
•Proactive Monitoring / Detection
�GitHub built-in detection/notification
�AWS built-in detection/notification
�AWS GuardDuty*
� *Notifications delayed ~15 min

•Build detections based on experience responding to
previous compromises

�Billing Alerts
�Anomaly Detections
�Activity in unutilized Regions
�…

Reactive (Response)

•Respond to alerts / findings / issues
� Services
� Config Rules
� CloudWatch Events Rules
� Lambda
� … third-party?

�Manual
� Acquire Memory
� Acquire System Snapshot

But…

Should We Do This All Manually?

Sounds like some DEVELOPMENT opportunities to me…

What is Dev(Sec)Ops’
Role in All This?

How I Build Stuff
This is my formula for building Digital Forensics and Incident
Response (DFIR) capabilities:

1. Identify the problem

2. Identify possible solutions

3. DEVELOP technical solution(s)

4. Implement technical solution(s)

5. Augment existing solution(s) and/or DEVELOP new ones.

So…

Doesn’t it make sense to harness the DEVELOPMENT /
Security / Operations team(s) in doing all this?

So, why aren’t we doing that (better)?

How about we start (getting better) today…

Dev(Sec)Ops Force Multiplication
Security starts in / with Development

So, what do we need to build/implement here?
• Implementing tool(s) for secret usage/management
� Start with existing tools
� Git-Secrets, HashiCorp Vault, AWS-Vault, Strongbox, etc.
� Or, roll your own?

�Build tools into pipeline for Development Instances / Env’s
� Instance User Data at Launch

Dev(Sec)Ops Force Multiplication
Security starts in / with Development

So, what do we need to build/implement here?
• Building IAM Policies

� MFA enforcement
� Require MFA condition(s) present to perform any actions
� Monitor for accounts with no MFA and disable/remove

� Least Privilege Access
� Implement existing tooling to start/test least privilege accesses
� Work across teams to build least privilege policies for:

� DevOps Team
� Security Team
� Users
� Instances / Services …

Dev(Sec)Ops Force Multiplication
Security starts in / with Development

So, what do we need to build/implement here?

• Implementing AWS Metadata Proxy Filtering/Blocking
� Start With Existing Tools
� https://github.com/Netflix-Skunkworks/aws-metadata-proxy
� https://github.com/lyft/metadataproxy

�Augment to your needs
�Build this into your deployment pipeline:
� CloudFormation Templates
� OpsWorks Stacks
� Terraform
� …

https://github.com/Netflix-Skunkworks/aws-metadata-proxy
https://github.com/lyft/metadataproxy

Dev(Sec)Ops Force Multiplication
Security starts in / with Development

So, what do we need to build/implement here?
• Implementing Proactive Monitoring/Detection
�CloudWatch Events Rules for CloudTrail
� Build Alerts for:
� Specific Access Key Usage
� Root Access Key
� Honeytokens

� Specific API Actions
� StopLogging, DeleteTrail, Create(User|AccessKey),

DeactivateMFADevice …

Dev(Sec)Ops Force Multiplication
Security starts in / with Development

So, what do we need to build/implement here?
• Implementing AWS GuardDuty
� Start with Existing Rules
�Build new Rules based on investigations
�Build response automations based on real-world use cases
� CloudWatch Events Rule -> Lambda to respond with <X> actions

• Building Response Automations
�Access Key / Account Disabling (or Deletion) + MUCH else
�Be ingenious through Dev(Sec)Ops and Security Team
collaborations in coming up with your own!

TL;DR

TL;DR
• Security starts early in the Development process

• Dev(Sec)Ops plays a huge role in both proactive and
reactive protection and response

• Collaboration on development, testing, review, and
augmentation is key

• Automate, Automate, Automate

The better we build things together…
The sooner we detect the badness…

The faster and better we respond…
The stronger we (and the business) become.

The End
Email: jpoling@secureworks.com
Twitter: @JPoForenso
Blog: https://www.ponderthebits.com

