SANS DFIR Summit 2023

@
EKS Incident Response

and Forensic Analysis

> Jonathon Poling

presentation.yaml

00101 01011 106011 00100 00110 01001 106010

About Me

Spent my entire career (16+ years now) focused on DFIR

SME 1in all major operating systems (Windows/Linux/Mac) +
Cloud (AWS)

Worked across all types of 1industry (Gov’t, private, public)
honing my skills

Have helped all types of customers from “mom and pop” to
Fortune 10 build, protect, and defend their org’s from
threats

Driven to tackling the hardest, most challenging, and/or
unaddressed problems (hence, EKS DFIR)

Always interested in learning, teaching, and making tangible
differences in the security/DFIR landscape

00101 01011 106011 00100 00110 01001 106010

Agenda

01 03
Introduction EKS Incident Response and
Investigation
02
EKS Data / Artifacts 04

Conclusion

00101 01011 106011 00100 00110 01001 106010

SANS DFIR Summit 2023

Introduction

00101 01011 106011 00100 00110 01001 106010

Intro [Current Problem]

v AWS Elastic Kubernetes Service

(EKS) 1s becoming 1increasingly
popular

v (Ergo..) Effectively securing and
investigating EKS incidents -s

becoming increasingly important

v Numerous higher-level blog posts
and articles on “how to respond”
to EKS incidents

v Very few (if any) low-level
walkthroughs with prescriptive
guidance on how to
comprehensively investigate
Kubernetes incidents

00101 01011 106011 00100 00110 01001 106010

EKS Data / [

Artifacts

00000000000000000000000000000000000

EKS Data / Artifacts |]

EKS leverages Docker (or Containerd) under the hood to run -its
containers
Docker uses the filesystem/drivers to run containers
All containers (and data) located under on the
local (Linux) filesystem
Container 1info (Image ID, Mount Points, etc.) located 1in
(or
)
Each image layer (filesystem for use by containers) has 1its own
directory under or
(latter 1is latest for best performance)
Images are stored by ID (e.g.,
It’s possible to do live interrogation/investigation of Docker
containers, BUT ... often best to collect a full image of the entire
system to perform comprehensive investigation

00101 01011 106011 00100 00110 01001 106010

EKS Data / Artifacts |]

Each Container runs in a separate/dedicated process on the system
On EKS, this means each Container will run as a child process of

(latest EKS versions use runtime instead
of docker)
Each Pod runs in a dedicated sub-process of the parent Container
process ()

For example, a system (Node) running 5 containers would have 5
container-shim processes running associated Pods and sub-processes
It’s possible to attempt to collect from a singular Container
process, BUT

Best practice is to collect memory from the entire system (Node) to
ensure you have a full comprehensive view of the system for analysis
(i.e., what if the entire Node is compromised and there are other
compromised Pods running?)

00101 01011 106011 00100 00110 01001 106010

EKS Data / Artifacts |]

The following control plane / audit logs exist for EKS:

(api) - API related logs, details, and errors
(audit) - actions/activities performed on cluster
(authenticator) - IAM/RBAC authentication logs
(controllerManager) - Node/Pod operations on cluster
(scheduler) - when/where Pods are assigned and run

CloudTrail logs available for AWS Control Plane actions performed
(Creating/Deleting/Managing Clusters)
Logs produced by each Pod on the local Node (need fetched/exported)

Ensure you enable ALL the above logs for effective monitoring and
investigation

00101 01011 106011 00100 00110 01001 106010

SANS DFIR Summit 2023

EKS Incident D 3
Response and

Investigation

00000000000000000000000000000000000

Instance details

Via GuardDuty t.mal

running

us-east-1a

Identify Cluster Info ami-0f2b7c6874eb8a14f Qe
Identi 'Fy Instance 1ID EKS Kubernetes Worker AMI with Amaz...

Identify Private and Public IP’s

IAM instance profile
arn:aws:iam::281869274301:instance-...
AIPAUDIFXZS675XEFSS3R R

eksworkshop-eksctl [4

eksworkshop-eksctl-nodegroup-Node [4

Network interfaces

Instance tags

Network interface 0 (eni-0d15238120a4fc629)
eni-0d15238120a4fc629 [4
ip-192-168-0-108.ec2.internal

owned 4

192.168.0.108

ec2-3-92-2-27.compute-1.amazonaws....

3.92.2.27

subnet-027282bb4e97bf01c

1t-05408c680c3ba1e9f [4

nodegroup [4

vpc-064c10760f6f5ecd4 [4

00101 01011 106011 00100 00110 01001 106010

Resource affected

TARGET Qe
EKSCluster @Q
ASIAUDIFXZS6Q44VFKG)J Qe
Via GuardDuty @
Unknown QQ
InstanceAdminRole Qe
Ident-i fy C-l-us-ter EKS cluster details
Ident-i fy WO rk-l.oad Name eksworkshop-eksctl QQ

I d en -t -i -Fy N ames p ace arn:aws:eks:us-east-1:281869274301:c...
vpc-064c10760f6f5ecd4 [4

Identify Container / Image Info

ACTIVE
09-20-2022 18:39:35 UTC
Kubernetes workload details
a
pods
2e7b53ea-5d77-4755-987f-ae81beda...
ae
false
Containers
priv-pod

ubuntu

00101 01011 106011 00100 00110 01001 106010

Via Kubectl (for compromised Node)

Get Node Information based on IP

Identify Instance ID of Node

—— OR ——

Label the Node

00101 01011 106011 00100 00110 01001 106010

Via Kubectl (for compromised Pod)

Identify Node associated with Pod and Namespace

Identify Instance ID of Node where Pod 1is running

—— OR ——

Label the Pod

00101 01011 106011 00100 00110 01001 106010

Disk / Memory Acquisition

Enable Termination Protection on the Instance

Ensure Instance Shutdown behavior is set to “Stop”

Tag the Instance (according to your needs/policies)
Identify Volumes attached to the Instance

Disable “Delete on Termination” setting for each Volume
Acquire Snapshot of each Volume

Acquire memory from Instance (your choice of method)

00101 01011 106011 00100 00110 01001

106010

Control Plane Logs

Ideally, both CloudTrail and EKS audit logs were enabled a long time
ago and reside 1in accessible storage
(Optional) You can acquire/query specific Pod(s) logs via kubectl

Fetch logs for an active Pod/Container

Fetch logs for a previously running Pod

00101 01011 106011 00100 00110 01001 106010

Node Containment

Isolate the Node

Pod Containment

Develop a default-deny policy for the associated Pod (update the
policy with the appropriate tags before running)

Isolate the Pod

00101 01011 106011 00100 00110 01001 106010

Instance Containment

Leverage appropriate Security Group, NACL, Firewall, etc. mechanisms
to effectively isolate the Instance

Remove or update (with appropriately scoped) Instance Profile

Revoke existing temporary (STS) credentials by applying an
appropriate revocation policy to the Instance’s associated Role

Note: Ensure you update the aws:TokenIssueTime value within the policy
to an appropriate time based on the situation and incident

00101 01011 106011 00100 00110 01001 106010

Docker Forensics Toolkit (Initial Setup)

Instrument a dedicated forensic analysis Instance
Create new Volume(s) from previously acquired Volume Snapshot(s)

Attach new Volume(s) to the analysis Instance
Mount Volume(s) READ-ONLY

Instrument Docker Forensics Toolkit

00101 01011 106011 00100 00110 01001 106010

Docker Forensics Toolkit (Analysis)

Get Docker environment information
Identify Containers/Pods on system
List all images running on system

Note: Images that don't belong to a Repository were not pulled from
Docker Hub or a private Registry, but likely built on this system.
Images without a corresponding container instance may indicate a
deleted contatiner.

00101 01011 106011 00100 00110 01001 106010

Docker Forensics Toolkit (Analysis)

Identify specific Container/Pod information

Show image build history

Note: Identify any possibly malicious commands involved in the image
build

Show all logs for a given Container/Pod

00101 01011 106011 00100 00110 01001 106010

Docker Forensics Toolkit (Analysis)

Mount Container/Pod filesystem for analysis

Note: You may receive an “Failed to execute script 'main' due to
unhandled exception!” error, even though the filesystem has
successfully mounted.

Verify successful mount

binfmt_misc on /proc/sys/fs/binfmt_misc type binfmt_misc (rw,relatime)

tmpfs on /run/user/1000 type tmpfs (rw,nosuid,nodev,relatime,size=786372k,mode=700,uid=1000,gid=1000)

/dev/nvme2nl on /mnt/EKS tvpe xfs (ro.relatime.nouuid.norecovery.attr2.inode64.noauota)

overlay on /tmp/tmpmfr3bgy5 type overlay (ro,relatime,lowerdir=1/GZORLGDHMHMPYLY7RI7EDJ45]5:1/INL2PTTSEWTY3S3RLL6EJIFOSL :/mnt/EKS/

00101 01011 106011 00100 00110 01001 106010

Docker Forensics Toolkit (Analysis)

Examine Container/Pod filesystem

Dismount Container/Pod filesystem

00101 01011 106011 00100 00110 01001 106010

.kubelet 3001
.containerd-shim 3404
. .pause 3449 65535
.o . .containerd-shim 3406
Volatili ty . .pause 3480 65535
.containerd-shim 4227
. .kube-proxy 4247
Acquire process tree listing of ‘Cg"t:‘""d'shm zggg
running processes on the Node - kBs-oout £ 5438
...tee 5439
.containerd-shim 27336
. .pause 27376 65535
.containerd-shim 27587
..nginx 27609
...Nginx \ 27679 101
...Nginx 27680 101
Note: Each container on EKS (running fg:z;’;""d S AEADZES FaE
containerd) will have a parent .amazon-ssm-agen 7979
.containerd-shim 10769
process name of as . .pause 10809 65535
seen below .containerd-shim 10980
..redis-server 11000 100
.containerd-shim 9975
..sleep 9095
00101 01011 10011 00100 00110 01001 10010

Volatility

Examine a specific Container/Pod
Identify the Container/Pod by name
Identify PID(s) associated with the Container/Pod
Examine specific PID(s) memory space for linked/referenced/open
files, etc.

Dump specific memory space from the Pod (by PID) for analysis

. Whatever other memory analysis is needed

00101 01011 106011 00100 00110 01001 106010

Control Plane Logs (CloudTrail)

Some Athena (SQL) samples to get you started...

Identify top EKS events/actions

00101 01011 106011 00100 00110 01001 106010

Control Plane Logs (CloudTrail)

Identify all Create*x EKS events/actions

00101 01011 106011 00100 00110 01001 106010

Control Plane Logs (CloudTrail)

Identify all Delete* EKS events/actions

00101 01011 106011 00100 00110 01001 106010

Audit Logs

Leveraging CloudWatch Logs Insights

Identify all actions associated with a Node (Instance)

Note: Adjust timestamp filter to the appropriate time range within the
console or within the search query

00101 01011 106011 00100 00110 01001 106010

Audit Logs

Identify all API Audit logs with “create” events for the Node
(Instance)

00101 01011 106011 00100 00110 01001 106010

Audit Logs

Identify who created a Node and when, along with Instance metadata

00101 01011 106011 00100 00110 01001 106010

Audit Logs

Identify when Node (Instance) infrastructure was created/launched

00101 01011 106011 00100 00110 01001 106010

Audit Logs

Identify all scheduling activity on a Node (Instance)

00101 01011 106011 00100 00110 01001 106010

Audit Logs

Identify all actions associated with a Container/Pod

Note: Adjust timestamp filter to the appropriate time range within the
console or within the search query

00101 01011 106011 00100 00110 01001 106010

Audit Logs

Identify who created a Container/Pod and when

00101 01011 106011 00100 00110 01001 106010

Audit Logs

Identify the Node (Instance) where the Container/Pod was scheduled (run)

00101 01011 106011 00100 00110 01001 106010

Audit Logs

Identify the Instance ID of the Node

00101 01011 106011 00100 00110 01001 106010

Audit Logs

Identify commands executed against/on the Container/Pod through kubectl

00101 01011 106011 00100 00110 01001 106010

SANS DFIR Summit 2023

Conclusion

00101 01011 106011 00100 00110 01001 106010

There’s a lot more to EKS Incident Response and Forensic Analysis
than high-level “isolate the Node” (in what order/manner?),
“determine who created the Pod” (ok, but how?),

Understanding the container filesystem and memory structure 1is key
to effective and comprehensive investigation

There are a variety of tools/mechanisms to effectively search EKS
data and artifacts (this presentation is just a sampling)

Live response is an option, but data collection for offline analysis
is better practice and relatively easy leveraging cloud native
mechanisms

I recommend acquiring data from the entire Node/Instance versus a
singular Container/Pod for thoroughness and the ability to perform
more comprehensive investigation (what if more than a singular
Container/Pod 1is compromised?)

Understanding the control plane logs and their contents/value 1is key
to effectively searching and identifying artifacts/evidence

00101 01011 106011 00100 00110 01001 106010

Thanks!

@JPoForenso

https://www.ponderthebits.com

00101 01011 106011 00100 00110 01001 106010

