
0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

#

#

EKS Incident Response
and Forensic Analysis

kubectl apply -f presentation.yaml

SANS DFIR Summit 2023

> Jonathon Poling
Principal Consultant

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

About Me

§ Spent my entire career (16+ years now) focused on DFIR
§ SME in all major operating systems (Windows/Linux/Mac) +

Cloud (AWS)
§ Worked across all types of industry (Gov’t, private, public)

honing my skills
§ Have helped all types of customers from “mom and pop” to

Fortune 10 build, protect, and defend their org’s from
threats

§ Driven to tackling the hardest, most challenging, and/or
unaddressed problems (hence, EKS DFIR)

§ Always interested in learning, teaching, and making tangible
differences in the security/DFIR landscape

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Introduction
{01}

EKS Data / Artifacts
{02}

{03}
EKS Incident Response and
Investigation

Agenda

{04}
Conclusion

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Introduction 01
#

SANS DFIR Summit 2023 EKS Incident Response and Forensic Analysis

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Intro (Current Problem)
ü AWS Elastic Kubernetes Service
(EKS) is becoming increasingly
popular

ü (Ergo…) Effectively securing and
investigating EKS incidents is
becoming increasingly important

ü Numerous higher-level blog posts
and articles on “how to respond”
to EKS incidents

ü Very few (if any) low-level
walkthroughs with prescriptive
guidance on how to
comprehensively investigate
Kubernetes incidents

Today we change this.

Obligatory Stock Photo
(Pretty cool, yeah?)

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

EKS Data /
Artifacts

02
#

SANS DFIR Summit 2023 EKS Incident Response and Forensic Analysis

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

EKS Data / Artifacts (Disk)
§ EKS leverages Docker (or Containerd) under the hood to run its

containers
§ Docker uses the OverlayFS filesystem/drivers to run containers
§ All containers (and data) located under /var/lib/docker/* on the

local (Linux) filesystem
§ Container info (Image ID, Mount Points, etc.) located in

/var/lib/docker/containers/<Container-ID>/config.json (or
config.v2.json)

§ Each image layer (filesystem for use by containers) has its own
directory under /var/lib/docker/overlay/* or
/var/lib/docker/overlay2/* (latter is latest for best performance)

§ Images are stored by ID (e.g., /var/lib/docker/overlay2/<Image-ID>/*)
§ It’s possible to do live interrogation/investigation of Docker

containers, BUT ... often best to collect a full image of the entire
system to perform comprehensive investigation

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

EKS Data / Artifacts (Memory)
§ Each Container runs in a separate/dedicated process on the system
§ On EKS, this means each Container will run as a child process of

containerd-shim (latest EKS versions use containerd runtime instead
of docker)

§ Each Pod runs in a dedicated sub-process of the parent Container
process (containerd-shim)

§ For example, a system (Node) running 5 containers would have 5
container-shim processes running associated Pods and sub-processes

§ It’s possible to attempt to collect from a singular Container
process, BUT ...

§ Best practice is to collect memory from the entire system (Node) to
ensure you have a full comprehensive view of the system for analysis
(i.e., what if the entire Node is compromised and there are other
compromised Pods running?)

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

EKS Data / Artifacts (Logs)
§ The following control plane / audit logs exist for EKS:

API server (api) – API related logs, details, and errors
Audit (audit) – actions/activities performed on cluster
Authenticator (authenticator) – IAM/RBAC authentication logs
Controller manager (controllerManager) – Node/Pod operations on cluster
Scheduler (scheduler) – when/where Pods are assigned and run

§ CloudTrail logs available for AWS Control Plane actions performed
(Creating/Deleting/Managing Clusters)

§ Logs produced by each Pod on the local Node (need fetched/exported)
§ Ensure you enable ALL the above logs for effective monitoring and

investigation

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

EKS Incident
Response and
Investigation

03
#

SANS DFIR Summit 2023 EKS Incident Response and Forensic Analysis

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Identification
＃ Via GuardDuty

§ Identify Cluster Info
§ Identify Instance ID
§ Identify Private and Public IP’s

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Identification
＃ Via GuardDuty

§ Identify Cluster
§ Identify Workload Name
§ Identify Namespace
§ Identify Container / Image Info

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Identification
＃ Via Kubectl (for compromised Node)

Get Node Information based on IP
$ kubectl get nodes -o wide | grep <PrivateIP>

Identify Instance ID of Node
$ kubectl get nodes <nodename> -n <namespace> -o custom-
columns=NAME:.metadata.name,INSTANCEID:.spec.providerID
 -- OR --
$ kubectl get nodes <nodename> -n <namespace> -o custom-
columns=NAME:.metadata.name,INSTANCEID:.spec.providerID | sed -e
's/aws:.*\///g'

Label the Node
$ kubectl label node <nodename> phase=QUARANTINE

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Identification
＃ Via Kubectl (for compromised Pod)

Identify Node associated with Pod and Namespace
$ kubectl get pods <podname> -n <namespace> -o wide –show-labels

Identify Instance ID of Node where Pod is running
$ kubectl get nodes <nodename> -n <namespace> –-show-labels -o wide
 -- OR --
$ kubectl get nodes <nodename> -n <namespace> -o custom-
columns=NAME:.metadata.name,INSTANCEID:.spec.providerID | sed -e
's/aws:.*\///g'

Label the Pod
$ kubectl label pod <podname> phase=QUARANTINE

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Data Acquisition
＃ Disk / Memory Acquisition

§ Enable Termination Protection on the Instance
§ Ensure Instance Shutdown behavior is set to “Stop”
§ Tag the Instance (according to your needs/policies)
§ Identify Volumes attached to the Instance
§ Disable “Delete on Termination” setting for each Volume
§ Acquire Snapshot of each Volume
§ Acquire memory from Instance (your choice of method)

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Data Acquisition
＃ Control Plane Logs

§ Ideally, both CloudTrail and EKS audit logs were enabled a long time
ago and reside in accessible storage

§ (Optional) You can acquire/query specific Pod(s) logs via kubectl

Fetch logs for an active Pod/Container
$ kubectl logs <podname> [-c <containername>]

Fetch logs for a previously running Pod
$ kubectl logs –p <podname>

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Initial Containment
＃ Node Containment

Isolate the Node
$ kubectl cordon <nodename>

＃ Pod Containment

§ Develop a default-deny policy for the associated Pod (update the
policy with the appropriate tags before running)

Isolate the Pod
$ kubectl apply -f pod-isolation-default-deny.yaml

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Initial Containment
＃ Instance Containment

§ Leverage appropriate Security Group, NACL, Firewall, etc. mechanisms
to effectively isolate the Instance

§ Remove or update (with appropriately scoped) Instance Profile
§ Revoke existing temporary (STS) credentials by applying an

appropriate revocation policy to the Instance’s associated Role

Note: Ensure you update the aws:TokenIssueTime value within the policy
to an appropriate time based on the situation and incident

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Disk Analysis
＃ Docker Forensics Toolkit (Initial Setup)

§ Instrument a dedicated forensic analysis Instance
§ Create new Volume(s) from previously acquired Volume Snapshot(s)
§ Attach new Volume(s) to the analysis Instance
§ Mount Volume(s) READ-ONLY
$ sudo mount -o ro,nouuid,norecovery,offset=<offset> /dev/<device>
/mnt/point
§ Instrument Docker Forensics Toolkit
$ git clone https://github.com/docker-forensics-toolkit/toolkit.git
$ pyinstaller dof.spec

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Disk Analysis
＃ Docker Forensics Toolkit (Analysis)

Get Docker environment information
$ sudo dof status /mnt/point/

Identify Containers/Pods on system
$ sudo dof list-containers /mnt/point/

List all images running on system
$ sudo dof list-images /mnt/point/

Note: Images that don't belong to a Repository were not pulled from
Docker Hub or a private Registry, but likely built on this system.
Images without a corresponding container instance may indicate a
deleted container.

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Disk Analysis
＃ Docker Forensics Toolkit (Analysis)

Identify specific Container/Pod information
$ sudo dof list-containers /mnt/point/ | grep <podname>

Show image build history
$ sudo dof show-image-history --image <image> /mnt/point/

Note: Identify any possibly malicious commands involved in the image
build

Show all logs for a given Container/Pod
$ dof show-container-log --container <container-name> /mnt/point/

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Disk Analysis
＃ Docker Forensics Toolkit (Analysis)

Mount Container/Pod filesystem for analysis
$ dof mount-container --container <container-name> /mnt/point/

Note: You may receive an “Failed to execute script 'main' due to
unhandled exception!” error, even though the filesystem has
successfully mounted.

Verify successful mount
$ mount

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Disk Analysis
＃ Docker Forensics Toolkit (Analysis)

Examine Container/Pod filesystem
$ sudo ls -la </tmp/mountpoint>
$ sudo log2timeline ...
... standard linux filesystem analysis ...

Dismount Container/Pod filesystem
$ sudo umount </tmp/mountpoint>

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Memory Analysis
＃ Volatility

Acquire process tree listing of
running processes on the Node

$ python ./volatility/vol.py -f
<data.lime> --profile=<Vol-Profile>
linux_pstree

Note: Each container on EKS (running
containerd) will have a parent
process name of containerd-shim as
seen below

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Memory Analysis
＃ Volatility

Examine a specific Container/Pod
§ Identify the Container/Pod by name
§ Identify PID(s) associated with the Container/Pod
§ Examine specific PID(s) memory space for linked/referenced/open

files, etc.
$ python ./volatility/vol.py -f <data.lime> --profile=<Vol-Profile>
linux_proc_maps -p <PID>
§ Dump specific memory space from the Pod (by PID) for analysis
$ python ./volatility/vol.py -f <data.lime> --profile=<Vol-Profile>
linux_dump_map -p <PID> -s <0xMEM> -D . --output-file=<name>
§ ... Whatever other memory analysis is needed

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Log Analysis
＃ Control Plane Logs (CloudTrail)

§ Some Athena (SQL) samples to get you started...

Identify top EKS events/actions
SELECT region_partition, eventname, count(*) as eventcount FROM
cloudtrail
WHERE eventsource = 'eks.amazonaws.com'
AND date_partition >= '2021/07/01'
AND date_partition <= '2021/07/31'
AND account_partition = '111122223333'
AND region_partition in ('us-east-1','us-east-2','us-west-2', 'us-
west-2')
GROUP BY region_partition, eventname
ORDER BY region_partition, eventcount DESC

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Log Analysis
＃ Control Plane Logs (CloudTrail)

Identify all Create* EKS events/actions
SELECT region_partition, eventname, count(*) as eventcount FROM
cloudtrail
WHERE eventsource = 'eks.amazonaws.com'
AND eventname LIKE 'Create%'
AND date_partition >= '2021/07/01'
AND date_partition <= '2021/07/31'
AND account_partition = '111122223333'
AND region_partition in ('us-east-1','us-east-2','us-west-2', 'us-
west-2')
GROUP BY region_partition, eventname
ORDER BY region_partition, eventcount DESC

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Log Analysis
＃ Control Plane Logs (CloudTrail)

Identify all Delete* EKS events/actions
SELECT region_partition, eventname, count(*) as eventcount FROM
cloudtrail
WHERE eventsource = 'eks.amazonaws.com'
AND eventname LIKE 'Delete%'
AND date_partition >= '2021/07/01'
AND date_partition <= '2021/07/31'
AND account_partition = '111122223333'
AND region_partition in ('us-east-1','us-east-2','us-west-2', 'us-
west-2')
GROUP BY region_partition, eventname
ORDER BY region_partition, eventcount DESC

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Log Analysis
＃ Audit Logs

§ Leveraging CloudWatch Logs Insights ...

Identify all actions associated with a Node (Instance)
fields @timestamp, @message
| filter @message like "<nodename>" or @message like "<PrivateIP>"
| filter @timestamp >= toMillis("YYYY-MM-DDT12:34:56.123-07:00")
| filter @timestamp <= toMillis("YYYY-MM-DDT12:34:56.123-07:00")
| sort @timestamp asc

Note: Adjust timestamp filter to the appropriate time range within the
console or within the search query

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Log Analysis
＃ Audit Logs

Identify all API Audit logs with “create” events for the Node
(Instance)
fields @timestamp, @message
| filter verb == "create"
| filter @message like "<PrivateIP>" or @message like "<nodename>"
| sort @timestamp asc

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Log Analysis
＃ Audit Logs

Identify who created a Node and when, along with Instance metadata
fields @timestamp, requestReceivedTimestamp, objectRef.name,
objectRef.resource, verb, stage, responseObject.kind,
responseStatus.code, user.extra.accessKeyId.0, user.extra.arn.0,
user.username, sourceIPs.0, userAgent
| filter verb == "create"
| filter @message like "<PrivateIP>"
| sort requestReceivedTimestamp asc

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Log Analysis
＃ Audit Logs

Identify when Node (Instance) infrastructure was created/launched
fields @timestamp, @message
| filter @logStream like /cloud-controller-manager/
| filter @message like "<nodename>"
| filter @message like "Added" or @message like "process"
| sort @timestampe asc

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Log Analysis
＃ Audit Logs

Identify all scheduling activity on a Node (Instance)
fields @timestamp, @message
| filter @logStream like /kube-scheduler/
| filter @message like "<nodename>"
| sort @timestamp asc

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Log Analysis
＃ Audit Logs

Identify all actions associated with a Container/Pod
fields @timestamp, @message
| filter objectRef.name == "<pod-name>"
| filter @timestamp >= toMillis("YYYY-MM-DDT12:34:56.123-07:00")
| filter @timestamp <= toMillis("YYYY-MM-DDT12:34:56.123-07:00")
| sort @timestamp asc

Note: Adjust timestamp filter to the appropriate time range within the
console or within the search query

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Log Analysis
＃ Audit Logs

Identify who created a Container/Pod and when
fields @timestamp, requestReceivedTimestamp, objectRef.name,
objectRef.namespace, objectRef.resource, verb, stage,
responseObject.kind, responseObject.status.phase, responseStatus.code,
responseObject.status, responseObject.reason, responseObject.message,
user.extra.accessKeyId.0, user.extra.arn.0, user.username,
sourceIPs.0, userAgent
| filter objectRef.name == "<pod-name>"
| filter verb == "create"
| filter responseObject.kind in ["Pod","Status"]
| sort requestReceivedTimestamp asc

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Log Analysis
＃ Audit Logs

Identify the Node (Instance) where the Container/Pod was scheduled (run)
fields @timestamp, @message
| filter @logStream like /kube-scheduler/
| filter @message like "<pod-name>"
| parse @message 'pod="*" node="*"' as pod, node

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Log Analysis
＃ Audit Logs

Identify the Instance ID of the Node
fields @timestamp, @message
| filter @logStream like /cloud-controller-manager/
| filter @message like "<nodename>" and @message like "Instance ID"
| parse @message '] is *' instance_id

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Log Analysis
＃ Audit Logs

Identify commands executed against/on the Container/Pod through kubectl
fields @timestamp, requestReceivedTimestamp, objectRef.name,
objectRef.namespace, objectRef.resource, verb, stage,
responseStatus.code, user.extra.accessKeyId.0, user.extra.arn.0,
user.username, sourceIPs.0, userAgent, requestURI
| filter objectRef.name == "<pod-name>"
| filter requestURI like /exec\?command=/
| parse @message /(exec\?command=?)(?<command>([a-zA-Z0-9-_.]+))/
| sort requestReceivedTimestamp asc

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Conclusion 04
#

SANS DFIR Summit 2023 EKS Incident Response and Forensic Analysis

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Conclusion
＃ There’s a lot more to EKS Incident Response and Forensic Analysis

than high-level “isolate the Node” (in what order/manner?),
“determine who created the Pod” (ok, but how?), ...

＃ Understanding the container filesystem and memory structure is key
to effective and comprehensive investigation

＃ There are a variety of tools/mechanisms to effectively search EKS
data and artifacts (this presentation is just a sampling)

＃ Live response is an option, but data collection for offline analysis
is better practice and relatively easy leveraging cloud native
mechanisms

＃ I recommend acquiring data from the entire Node/Instance versus a
singular Container/Pod for thoroughness and the ability to perform
more comprehensive investigation (what if more than a singular
Container/Pod is compromised?)

＃ Understanding the control plane logs and their contents/value is key
to effectively searching and identifying artifacts/evidence

0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0

Twitter: @JPoForenso

Website: https://www.ponderthebits.com

Thanks!

#

